On some lacunary generalized difference sequence spaces of invariant means defined by a sequence of modulus functions
| dc.contributor.author | Atıcı, G. | |
| dc.contributor.author | Bektaş C.A. | |
| dc.date.accessioned | 2020-01-29T18:53:51Z | |
| dc.date.available | 2020-01-29T18:53:51Z | |
| dc.date.issued | 2011 | |
| dc.department | Fakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
| dc.description.abstract | The aim of this paper is to introduce and study the sequence spaces [w; ?; F; p; q]?(? m v), [w; ?, F, p, q]1(? m v) and [w; ?, F, p, q]0(? m v), which arise from the no-tions of generalized difference sequence space, lacunary convergence, invariant mean and a sequence of Moduli F = (fk). We establish some inclusion relations between these spaces under some conditions. | en_US |
| dc.identifier.doi | 10.5666/KMJ.2011.51.4.385 | |
| dc.identifier.endpage | 393 | en_US |
| dc.identifier.issn | 1225-6951 | |
| dc.identifier.issue | 4 | en_US |
| dc.identifier.scopus | 2-s2.0-84857180927 | |
| dc.identifier.scopusquality | Q3 | |
| dc.identifier.startpage | 385 | en_US |
| dc.identifier.uri | https://dx.doi.org/10.5666/KMJ.2011.51.4.385 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12639/1269 | |
| dc.identifier.volume | 51 | en_US |
| dc.identifier.wos | WOS:000410212800004 | |
| dc.identifier.wosquality | Q3 | |
| dc.indekslendigikaynak | Web of Science | |
| dc.indekslendigikaynak | Scopus | |
| dc.language.iso | en | |
| dc.relation.ispartof | Kyungpook Mathematical Journal | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Difference sequence spaces | en_US |
| dc.subject | Invariant mean | en_US |
| dc.subject | Lacunary sequence | en_US |
| dc.subject | Modulus function | en_US |
| dc.title | On some lacunary generalized difference sequence spaces of invariant means defined by a sequence of modulus functions | en_US |
| dc.type | Article |










