Prediction of scour hole characteristics caused by water jets using metaheuristic artificial bee colony-optimized neural network and pre-processing techniques

dc.authorwosidKARTAL, Veysi/IZE-2137-2023
dc.contributor.authorKartal, Veysi
dc.contributor.authorEmiroglu, Muhammet Emin
dc.contributor.authorKatipoglu, Okan Mert
dc.contributor.authorKarakoyun, Erkan
dc.date.accessioned2023-11-10T21:10:03Z
dc.date.available2023-11-10T21:10:03Z
dc.date.issued2023
dc.departmentMAÜNen_US
dc.description.abstractPreventing plunge pool scouring in hydraulic structures is crucial in hydraulic engineering. Although many studies have been conducted experimentally to determine relationship between the scour depth and water jets in several fields, available equations have deficiencies in calculating the exact scour due to complexity of the scour process. This study investigated local scour depth in plunge pool using metaheuristic artificial bee colony-optimized feed-forward neural network (ABC-FFNN), variational mode decomposition (VMD), and ensemble empirical mode decomposition (EEMD) techniques. To set modeling, the input parameters are impact angle, densimetric Froude number, impingement length, and nozzle diameter. The models' training and testing were conducted using data available in the literature. The models' performances were compared with experiments. The results demonstrate that scour depth, length, width, and ridge height can be calculated more accurately than the available equations. A rank analysis was also applied to obtain the most critical parameter in predicting scour parameters in water jet scouring. ABC-FFNN, VMD-ABC-FFNN, and EEMD-VMD-FFNN hybrid models were performed to obtain scour parameters. As a result, ABC-FFNN algorithms produced the best solution to predict the scour due to circular water jets, with the values for training (R-2: 0.331-0.778) and testing (R-2: 0.495-0.863).en_US
dc.description.sponsorshipFirat University Scientific Research Projects (FUBAP) Unit [MF.17.38]en_US
dc.description.sponsorshipFirat University Scientific Research Projects (FUBAP) Unit funded the present study with the project number MF.17.38.en_US
dc.identifier.doi10.2166/hydro.2023.230
dc.identifier.issn1464-7141
dc.identifier.issn1465-1734
dc.identifier.orcid0000-0003-4671-1281
dc.identifier.scopus2-s2.0-85179032330
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.2166/hydro.2023.230
dc.identifier.urihttps://hdl.handle.net/20.500.12639/5399
dc.identifier.wosWOS:001068439400001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIwa Publishingen_US
dc.relation.ispartofJournal of Hydroinformaticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Bee Colony Optimizationen_US
dc.subjectArtificial Neural Networken_US
dc.subjectScour Hole Characteristicsen_US
dc.subjectSignal Processen_US
dc.subjectWater Jeten_US
dc.subjectLocal Scouren_US
dc.subjectHydraulic Structuresen_US
dc.subjectTrapezoidal Channelen_US
dc.subjectAir Entrainmenten_US
dc.subjectModel Treeen_US
dc.subjectEnd-Depthen_US
dc.subjectDownstreamen_US
dc.subjectPerformanceen_US
dc.subjectAlgorithmsen_US
dc.subjectDischargeen_US
dc.titlePrediction of scour hole characteristics caused by water jets using metaheuristic artificial bee colony-optimized neural network and pre-processing techniquesen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
5399.pdf
Boyut:
1.24 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text