Prediction of the Ionospheric foF2 Parameter Using R Language Forecasthybrid Model Library Convenient Time Series Functions

dc.authorwosidAtıcı, Ramazan/AAD-6350-2019
dc.authorwosidATICI, Ramazan/L-1495-2016
dc.contributor.authorAtıcı, Ramazan
dc.contributor.authorPala, Zeydin
dc.date.accessioned2022-09-04T10:26:52Z
dc.date.available2022-09-04T10:26:52Z
dc.date.issued2022
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümüen_US
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.departmentMeslek Yüksekokulları, Teknik Bilimler Meslek Yüksekokulu, Elektronik ve Otomasyon Bölümüen_US
dc.departmentFakülteler, Mühendislik-Mimarlık Fakültesi, Yazılım Mühendisliği Bölümüen_US
dc.description.abstractTwo different approaches of two different time-series models were used to predict the critical frequency (foF2) of the ionospheric F2 layer over Athens (38.0 degrees N, 23.5 degrees E), Greece. Experimental foF2 data were obtained for the Athens station between 2004 and 2018. For the foF2 prediction, the R language forecasthybrid model library time-series convenient functions were used. Root mean square error (RMSE), mean absolute percent error (MAPE) and mean absolute error (MAE) performance metrics were used to examine the performances of the models. According to these tests, the predictions made with the cross-validation error approach are somewhat better than the equal-weighted-prediction approach. Besides, the predictions of foF2 were compared with those of the IRI-2016 model. According to the RMSE, MAE and MAPE analysis, the values of IRI-2016 model were 1.17 MHz, 1.00 MHz and 29.67%, whereas those of EWP and cross-validation errormodel were 0.40, 0.28 and 5.60 and 0.40, 0.27 and 5.56, respectively. Therefore, it can be said that the predictions of these time-series approaches used for the first time for the prediction of ionospheric foF2 are better than those of the IRI-2016. As a result, time-series algorithms, which are now living in the golden age, offer new opportunities for the prediction of ionospheric parameters as in other fields.en_US
dc.identifier.doi10.1007/s11277-021-09050-6
dc.identifier.endpage3312en_US
dc.identifier.issn0929-6212
dc.identifier.issn1572-834X
dc.identifier.issue4en_US
dc.identifier.orcid0000-0001-7884-0112
dc.identifier.orcidATICI, Ramazan
dc.identifier.orcid0000-0001-7884-0112
dc.identifier.scopus2-s2.0-85113444471
dc.identifier.scopusqualityQ2
dc.identifier.startpage3293en_US
dc.identifier.urihttps://doi.org/10.1007/s11277-021-09050-6
dc.identifier.urihttps://hdl.handle.net/20.500.12639/4625
dc.identifier.volume122en_US
dc.identifier.wosWOS:000689492500015
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.institutionauthorAtıcı, Ramazan
dc.institutionauthorPala, Zeydin
dc.language.isoen
dc.publisherSpringeren_US
dc.relation.ispartofWireless Personal Communicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectData processing; Ionospheric critical frequency; Long-term forecast; Forecasthybrid; IRI modelen_US
dc.subjectIncoherent-Scatter Radar; Space Weather; Upper-Atmosphere; F(O)F(2); Wavesen_US
dc.titlePrediction of the Ionospheric foF2 Parameter Using R Language Forecasthybrid Model Library Convenient Time Series Functionsen_US
dc.typeArticle

Dosyalar

Orijinal paket

Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
4625.pdf
Boyut:
1.87 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Tam Metin / Full Text